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1. Introduction and summary

Field theories with a nontrivial vacuum structure often feature static localized finite-energy

solutions. Such lumps can be boosted to single solitons moving with constant velocity. The

scattering of these solitons off one another is, however, usually accessible only numerically.1

Alternatively, a qualitative understanding of soliton scattering can be achieved for small

relative velocity via the adiabatic or moduli-space dynamics invented by Manton [1, 2]. This

approach approximates the exact k-soliton scattering configuration by a time sequence

of static k-lump solutions. Thereby one introduces a time dependence for the latter’s

moduli αi, which is determined by extremizing the action on the moduli space Mk. Being

a functional of finitely many moduli αi(t), this action describes the motion of a point

particle in Mk, equipped with a metric gij(α) and a magnetic field Ai(α). Hence, the

motion of k slowly scattering solitons is well described by a geodesic trajectory in Mk,

possibly with magnetic forcing. Since among the moduli are the spatial locations of the

individual quasi-static lumps, (a projection of) the geodesic in Mk may be viewed as

trajectories of the various lumps in the common ambient space.

In order to test the validity of the adiabatic method, one would need to apply it to

an integrable model, where exact multi-soliton solutions are available for comparison. Yet,

such theories are rare in two or more spatial dimensions, which are required for interesting

trajectories. A prime example is the nonlinear sigma model for some group G in 1+2

dimensions. By adding a (necessarily Lorentz-breaking) WZW-like term with an arbitrary

1Exceptions are integrable theories, which allow for analytic multi-soliton configurations and an exact

S-matrix.
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coefficient, one generates a one-parameter family of extended sigma models. Their common

static configuration space is well known to contain multiple lumps (one-unitons), which are

based on hermitian projectors and thus sit in certain Grassmannians [3 – 5]. For a particular

strength of the WZW-like term, one obtains the Ward model, which is integrable [6 – 8].

Recently, the adiabatic approach was tested in this model for G = SU(2) [9].

It is rewarding to generalize the above set of ideas to field theories on noncommuta-

tive spaces. Such field theories offer not only smooth deformations of well known soliton

solutions but entirely new types of noncommutative solitons (for lectures on the subject

see [10]). This property is most prominent when the commutative limit yields a free the-

ory, because the soliton configurations are then forced to become singular in this limit. A

case in point is the abelian sigma model, i.e. choosing G = U(1), on a noncommutative

plane with ordinary time. It has the virtue that its static k-lump solutions take a very

simple form and depend exclusively on the k complex location moduli [11, 12]. Further-

more, its extension à la Ward is again integrable [13]. Therefore, the family of extended

U(1) sigma models seems ideally suited to try out the adiabatic method in the noncom-

mutative realm, and this is what we do in the present paper. For definiteness, we work

with the standard Moyal deformation, labelled by a positive constant parameter θ. The

Moyal-Weyl map is employed to pass from the star product to the operator realization on

the harmonic-oscillator Fock space H.

The sigma-model constraint can be implemented in unconstrained (multi-component)

scalar field models by choosing an appropriate potential and performing an infinite-stiffness

limit. Therefore, the soliton analysis for generic noncommutative field theories in 1+2 di-

mensions [10, 14 – 19] applies to noncommutative sigma models (without WZW-like term)

as well. In fact, it yields the exact static multi-lumps on the Moyal plane for any value

of θ, as we shall review in section 2 below. More precisely, the k-lump moduli space Mk

is parametrized by all collections of k harmonic-oscillator coherent states and is a k-

dimensional complex submanifold of the Grassmannian Gr(k,H). Section 3 computes the

full moduli-space action for the noncommutative U(1) extended sigma model. For reasons

to be explained, the result turns out to agree with the θ-independent part of the moduli-

space action for the generic scalar field theory, irrespective of the WZW-like term. More

concretely, Mk has a natural Kähler structure, with the Kähler potential being given by

the determinant of the matrix of coherent-state overlaps [17]. There is no magnetic back-

ground field. We briefly discuss the properties of the moduli-space metric and its limits for

coinciding lumps.

The moduli-space scattering trajectories for two solitons are investigated in section 4

and exhibit scattering angles between 0 and π
2 . Finally, section 5 compares with the time-

dependent solutions of the field theory family, in particular with the exact multi-soliton

configurations of the U(1) Ward model. Barring some miracle, the latter features only

solitonic no-scattering or bound-state solutions, which we display. It appears that the

adiabatic approximation fails in this integrable case, possibly due to its inability to sense

the WZW-like action term. A numerical investigation, also away from the integrable case,

could help settle this issue. Finally, we remark that our considerations are purely classical

and likely to be modified by quantum corrections.
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2. Noncommutative static lumps in scalar field and sigma models

We begin with a rather generic action of a real scalar field φ living on the Moyal plane

with coordinates (z, z̄) and depending on time t,

Sθ =

∫
dt d2z

[
1

2
φ̇2 − ∂zφ∂z̄φ − V?(φ)

]
, (2.1)

where the subscript on the potential signifies star-product multiplication based on

z ? z̄ − z̄ ? z = 2 θ . (2.2)

We further specify

V (φ) ≥ 0 , V (φ0) = 0 and V ′(φ) = v
∏

i

(φ − φi) . (2.3)

Static classical configurations φcl extremize the energy functional

Eθ =

∫
d2z

[
∂zφ∂z̄φ + V?(φ)

]
, (2.4)

which for large values of θ is dominated by the potential term, because z = O(
√

θ). Ex-

panding around θ=∞, one obtains [17]

φcl = φ̂ +
1

θ
φ̃ + . . . with φ̂ =

∑

i

φi Pi , (2.5)

where {Pi} is an orthogonal resolution of the star-algebra identity,

Pi ?Pj = δijPj and
∑

i

Pi =
�

. (2.6)

We also introduce the rank ki of Pi via

∫
d2z

2πθ
Pi = ki ∈ N0 . (2.7)

Since φ̃ and all further terms in the expansion are determined by φ̂, any classical solution

is fixed by an assignment of projectors Pi to the extrema φi of the potential. Restricting

ourselves to stable solutions, we always associate the zero projector (which is admissible)

to the local maxima of V . Please note that the collection {Pi} appearing in (2.5) must be

complete. The expansion of the classical energy reads

Eθ[φcl] = θE0 + E1 +
1

θ
E2 + · · · with E0 = 2π

∑

i

ki V (φi) (2.8)

and

E1 =

∫
d2z ∂zφ̂ ∂z̄φ̂ =

∑

ij

φi φj

∫
d2z ∂zPi ∂z̄Pj . (2.9)
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Any complete collection {Pi} extremizes Eθ at leading order in θ. Beyond this, however, E1

lifts this infinite degeneracy: its extremization selects a finite-dimensional class of identity

resolutions.

In [17], an asymmetric double-well potential was chosen, with local minima V (0) = 0

and V (λ) > 0. The authors assigned

φ = λ ↔ P and φ = 0 ↔ �−P , (2.10)

which led to

φ̂ = λP as well as E0 = 2π k V (λ) and E1 = λ2 ∫d2z |∂zP |2 . (2.11)

Presently, we consider instead the double-well potential

V (φ) = β (φ2 − 1)2 −→ V ′(φ) = 4β (φ+1)φ (φ−1) (2.12)

and associate

φ = −1 ↔ P and φ = +1 ↔ �−P , (2.13)

which implies

φ̂ =
�− 2P as well as E0 = 0 and E1 = 4

∫
d2z |∂zP |2 . (2.14)

It is easy to see that all higher corrections, i.e. φ̃, E2 etc., come with negative powers of β.

Therefore, we have the exact result

φcl → φ̂ and Eθ[φcl] → E1 (2.15)

in the limit of infinite stiffness, β → ∞, and there is no effective potential on the moduli

space. This limit nails the value of φ to −1 (in imP ) or to +1 (in kerP ) and makes the

classical configuration idempotent, i.e. φ̂2
? =

�
.

Idempotent fields also appear in nonlinear sigma models, where they define Grassman-

nian submanifolds of the group G via P = 1
2(1−φ). The simplest case occurs for G = U(1),

i.e. for complex unimodular φ, and becomes interacting when being Moyal deformed.2 Its

two Grassmannian submanifolds correspond precisely to the two idempotent values above,

namely φ = ±1. Hence, if we extend our double-well model to a Mexican-hat model for

complex φ, the stiff limit will yield the constraint |φ|2? =
�

defining the U?(1) sigma model,

and our trial configurations φ̂ for P of rank k parametrize precisely the Grassmannian

Gr(k,H). The only modification owed to the extension is a factor of two in the energy

functional. For k < ∞, the latter can be manipulated to

E1 = 8

∫
d2z |∂zP |2 = 8π k + 16

∫
d2z |(�−P ) ? ∂z̄P |2 ≥ 8π k , (2.16)

revealing a Bogomolnyi bound.3 The saturation EBPS = 8πk is reached when

(
�−P ) ? ∂z̄P = 0 , i.e. ∂z̄ : imP ↪→ imP . (2.17)

2The action will be given in the following section.
3A finite k also agrees with the topological charge Q of the respective Grassmannian. Negative values

of Q are produced by the flip P ←→ �−P and correspond to anti-solitons.
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Hence, the static classical configurations φ̂ =
�−2P extremizing E1 are given by projectors

stable under the ∂z̄ action, and their moduli space Mk for rank k describes static k-lump

solutions of the U?(1) sigma model in the Moyal plane.

In order to find an explicit parametrization of Mk, we pass from the star-product to

the operator formulation,

z →
√

2θ a , z̄ →
√

2θ a† hence
√

2θ ∂z → −[a†, .] ,
√

2θ ∂z̄ → [a, .]

(2.18)

with

[a , a†] =
�

and ∫d2z . . . = 2πθ trH . . . , (2.19)

justifying the definition (2.7). The Fock space H representing this Heisenberg algebra is

spanned by the basis

|n〉 =
1√
n!

(a†)n |0〉 with n ∈ N0 and a |0〉 = 0 . (2.20)

Any rank-k projector in H can be decomposed as

P = |T 〉 1

〈T |T 〉 〈T | with |T 〉 =
(
|T1〉, |T2〉, . . . , |Tk〉

)
, (2.21)

where the (not necessarily orthonormal) states |Ti〉 span the image of P . The BPS equa-

tion (2.17) now reads

(
�−P ) aP = 0 ⇐⇒ a |T 〉 = |T 〉Γ for some k×k matrix Γ . (2.22)

Generically, the freedom of basis change in imP can be used to diagonalize

Γ → diag(α1, α2, . . . , αk) with αi ∈ C , (2.23)

so that we have

a |Ti〉 = |Ti〉αi =⇒ |Ti〉 = |αi〉 ≡ e αia† |0〉 , (2.24)

revealing the key role of coherent states. We note that our solution depends on k complex

moduli parameters. The ensueing BPS projector

Pα =

k∑

i,j=1

|αi〉
(
〈α.|α.〉

)−1

ij
〈αj | (2.25)

generates a superposition of k Gaussian lumps in the Moyal plane. Besides the (inessen-

tial) choice of normalizations, only a residual permutation freedom remains in the solution

|T 〉 = |α〉 :=
(
|α1〉, |α2〉, . . . , |αk〉

)
. This corresponds to a relabelling of the lumps and

emphasizes their bosonic character. The general situation allows for coinciding values of

some αi → α, which leaves Γ in Jordan form. A Jordan block of size r yields a sub-

basis
{
|α〉, a†|α〉, . . . , (a†)r−1|α〉

}
, whose span is obviously invariant under the action of a.

Clearly, the ‘fusion’ of lumps smoothly produces lumps of higher ‘weight’. These obser-

vations determine the moduli space Mk as the k-th symmetrized power of the complex

plane, i.e.

Mk = C
k/Sk

∼= C
k , (2.26)

which is a smooth Kähler manifold despite the coordinate singularities at the coincidence

loci [17].
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3. Soliton moduli-space action for a family of abelian sigma models

We formulate the action for the extended noncommutative abelian sigma model in star-

product language. For the group-valued field

φ ∈ U?(1) , i.e. φ ? φ† =
�

= φ† ? φ , (3.1)

we define the antihermitian composite flat gauge connection

J := φ† ? dφ −→ F ≡ dJ + J ∧ J = 0 . (3.2)

The action is a sum

Sγ = S2 + γ S3 for γ ∈ [0, 1] , (3.3)

where the standard sigma-model term

S2 =
1

2

∫
J ∧ ∗J (3.4)

is formulated with a wedge product based on the star product and the Hodge star depending

on the 1+2 dimensional Minkowski metric η. The WZW-like term

S3 = −1

3

∫ 1

0

∫
V ∧ J̃ ∧ J̃ ∧ J̃ (3.5)

is an integral over R
1,2
θ × [0, 1], with the extension J̃ interpolating along the interval [0, 1]

between J̃=0 and J̃=J . Furthermore, there appears the Lorentz-breaking constant one-

form

V = dx for z = x + i y . (3.6)

By varying γ, we get a family of actions connecting the ordinary (non-chiral) sigma model

(at γ=0) to the (chiral) Ward model (at γ=1), both based on U?(1).

Introducing coordinates (xµ) = (x0, x1, x2) = (t, x, y) and subjecting the field to a

general coordinate transformation δφ = ξµ(x) ∂µφ, the action changes by

δSγ =

∫ {
∂(µξν) Tµν d2z dt + γ V (ξ)J ∧ J ∧ J

}
, (3.7)

which, writing J = Jµdxµ, yields the standard energy-momentum tensor

Tµν = Jµ ? Jν − 1

2
ηµν ηρσJρ ? Jσ . (3.8)

The Lorentz group SO(1,2) is broken to the y-boosts by the choice of V and, independently,

to the xy-rotations by the Moyal deformation, leaving nothing. Since y- and t-translations

are unbroken 4 the energy functional

E =
1

2

∫
d2z

{
∂tφ

† ∂tφ + ∂xφ† ∂xφ + ∂yφ
† ∂yφ

}
(3.9)

is conserved for all values of γ.

4Under x-translations, δSγ ∼ γ
R

J ∧ J ∧ J = 24π2γ n with n ∈ π3(G) = Z mostly. However, n = 0 for

φ ∈ Gr(k,H).
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Finally, the equation of motion reads

0 = (ηµν + γ Vρ ερµν) ∂µ(φ† ? ∂νφ)

= ∂x(φ† ? ∂xφ) + (1−γ) ∂y(φ
† ? ∂yφ) − (1−γ) ∂t(φ

† ? ∂tφ) + γ ∂y−t(φ
† ? ∂y+tφ)

(3.10)

with the Minkowski metric (ηµν) = diag(−1,+1,+1) and the Levi-Civita tensor ε, where

ε012 = 1.

For the adiabatic approximation, we need to find the static multi-lump solutions

φ̂(x, y). Since static configurations do not contribute to S3, the energy E reduces to E1 in

(2.9). Hence, the moduli space of static multi-lumps is the same for all γ, namely Mk as

derived in previous section. Abbreviating the k complex moduli by α, we denote the static

k-lump solution by φ̂(z, z̄;α). To extract the time dependence in the action, we rewrite

the latter as

Sγ [φ] =

∫
dt d2z

[1

2
φ̇2 + C?(φ, φ′) φ̇ − W?(φ, φ′)

]
with φ′ ≡ (∂zφ, ∂z̄φ) . (3.11)

Manton posits that slow soliton motion follows a geodesic of the static moduli space Mk,

i.e.

φ̂(t, z, z̄) ≈ φ̂(z, z̄;α(t)) =: φα , (3.12)

thus replacing dynamics for φ̂(t, z, z̄) with dynamics for α(t). We are instructed to compute

Smod[α] := S[φα]

=

∫
dt

[ 1

2
{∫(∂αφα)2} α̇2 + {∫ C?(φα, φ′

α) ∂αφα} α̇ − ∫ W?(φα, φ′
α)

]

=:

∫
dt

[ 1

2
gαα(α) α̇2 + Aα(α) α̇ − U(α)

]

(3.13)

and read off the metric g, magnetic field F = dA and potential U on the moduli space.

To implement this program for the extended deformed abelian sigma model, we return

to the operator formulation. Putting αi → αi(t) introduces t-dependence into

|α〉 =
(
|α1〉, . . . , |αk〉

)
→ Pα = |α〉 1

〈α|α〉 〈α|

→ φα =
�−2Pα → Ĵ = 2 [Pα,dPα] .

(3.14)

Inserting the obtained Ĵ(α, α̇) into the action (3.3) we make two important observations.

Firstly,

S3[φα] ∼
∫

dt ∂t trH
[
(a + a†)Pα

]
=

∫
dt

{
∂αi

trH
[
(a + a†)Pα

]}
α̇i + c.c. , (3.15)

which reveals the magnetic potential to be exact, Ai = ∂αi
Ω. Thus, magnetic forcing is

absent,5 and Smod is independent of γ. Secondly, we get

S2[φα] =

∫
dt trH

[
πθ

∣∣φ̇α

∣∣2 − 2π
∣∣[a, φα]

∣∣2
]

=

∫
dt

[
4πθ trHṖ 2

α − E[φα]
]
. (3.16)

Because E[φα] = 8π k is constant inside Mk, the second term yields an irrelevant constant

potential U and can be dropped.

5The holonomy of A = Aαdα may yet be nontrivial.
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As a result, Smod reduces to the kinetic part of S2[φα], which simplifies to

Smod = 4πθ

∫
dt trHṖ 2

α = 8πθ

∫
dt trH (

�−Pα) |α̇〉 〈α|α〉−1〈α̇| (3.17)

= 8πθ

∫
dt trk 〈α|α〉−1〈α̇|�−Pα|α̇〉 =:

∫
dt

k∑

i,j=1

gı̄j ˙̄αi α̇j ,

where

|α̇〉 ≡ ∂t|α〉 = a†|α〉 Γ̇ with Γ = diag({αi}) . (3.18)

Hence, abbreviating ∂αj
≡ ∂j and ∂ı̄ ≡ ∂ᾱi

, the metric on Mk is given by

gı̄j = 8πθ trH ∂ı̄Pα ∂jPα = 8πθ trk 〈α|α〉−1 ∂ı̄Γ
† 〈α|a (

�−Pα) a†|α〉 ∂jΓ . (3.19)

With the shorthand

M = (Mij) :=
(
〈α|α〉ij

)
=

(
〈αi|αj〉

)
=

(
e ᾱiαj

)
(3.20)

one computes

Smod = 8πθ

∫
dt trk 〈α|α〉−1 Γ̇† 〈α|a (

�−Pα) a†|α〉 Γ̇

= 8πθ

∫
dt

k∑

i,j=1

M−1
ji

˙̄αi 〈αi|a (
�−Pα) a†|αj〉 α̇j

= 8πθ

∫
dt

k∑

i,j=1

M−1
ji

{
Mij(1 + ᾱiαj) −

∑k
m,n=1Mim αm M−1

mn ᾱn Mnj

}
˙̄αi α̇j

= 8πθ

∫
dt

k∑

i,j=1

M−1
ji

{
M + Γ† M Γ − M Γ M−1Γ† M

}
ij

˙̄αi α̇j , (3.21)

which reveals the hermitian metric (gı̄j) on Mk. Using the identities

∂jM = Γ† M ∂jΓ and ∂ı̄M = ∂ı̄Γ
† M Γ , (3.22)

it is straightforward to check that this metric is indeed Kähler and derives from the Kähler

potential

K = 8πθ ln det M = 8πθ ln det
(
〈αi|αj〉

)
= 8πθ ln det

(
e ᾱiαj

)
. (3.23)

This result agrees with the geometric intuition: up to the prefactor of 8πθ, the metric

gı̄j = ∂ı̄∂jK is the natural one on the Grassmannian Gr(k,H). It also has an interesting

interpretation in terms of a system of classical identical particles [20].

Global rotations and translations act as

|αi〉 → |e i ϑαi〉 = e i ϑa†a |αi〉 and |αi〉 → |αi+β〉 = e β a† |αi〉 , (3.24)

– 8 –
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respectively, and shift the Kähler potential by a gauge transformation,

K → K + 8πθ
∑k

i=1

(
β̄αi + βᾱi + ββ̄

)
, (3.25)

leaving the metric unchanged. Furthermore, (3.23) is invariant under permutations of the

αi. When passing to center-of-mass and barycentric coordinates

s =
1

k

∑k
i=1αi and wi = αi − s such that

∑k
i=1wi = 0 , (3.26)

we get the decomposition

K = 8πθ k |s|2 + 8πθ ln det
(
e w̄iwj

)
, (3.27)

which shows that the metric depends only on difference coordinates αi−αj . One may also

extract the diagonal (free) part via

K = 8πθ
∑k

i=1 |αi|2 + 8πθ ln det
(
e− 1

2
|αi−αj |2+ 1

2
(ᾱiαj−ᾱjαi)

)
. (3.28)

From this expression it is easy to see a cluster decomposition property: Upon splitting the

moduli into two groups, {αi} = {α′
`, α

′′
m}, and separating these to infinity,

lim
|α′

`
−α′′

m|→∞
K

(
{αi}

)
= K

(
{α′

`}
)

+ K
(
{α′′

m}
)
. (3.29)

In particular, an isolated single lump at αq asymptotically contributes with |αq|2 to K.

Therefore, the moduli-space metric becomes flat for large mutual separations, |αi−αj| →
∞.

More interesting is the limit of coinciding lumps, say αi → α for i = q1, . . . , qr. Some

lengthy algebra shows that then

K → 8πθ
∑

q`>qm

ln |αq`
−αqm|2 + K ′ where still K ′ = ln det

(
〈T |T 〉

)
, (3.30)

but after making inside |T 〉 =
(
|α1〉, . . . , |αk〉

)
the replacement

{
|αq1

〉, |αq2
〉, . . . , |αqr〉

}
→

{
|α〉, a†|α〉, . . . , (a†)r−1|α〉

}
. (3.31)

The coordinate singularity in (3.30) can be removed by passing to new coordinates, namely

elementary symmetric polynomials in αq`
−α, which correspond precisely to the new states

in (3.31). K ′ produces the same metric as K but is smooth at the coincidence locus. In the

most general situation, |T 〉 is composed of various blocks like in (3.31), of different sizes r,

but the formula for the smooth Kähler potential K ′ in (3.30) remains correct.

4. Moduli-space trajectories for two-soliton scattering

For concreteness, let us display the simplest nontrivial case, i.e. k = 2. The moduli

space M2 of rank-two BPS projectors is parametrized by {α, β} ' {β, α} ∈ C
2/S2. Since

the details have been given in [16], we can be short here.
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Figure 1: Conformal factor of two-soliton metric.

The static two-lump configuration is derived from (2.25) as

φαβ =
�− 2Pαβ =

�− 2
|α〉〈β|β〉〈α| + |β〉〈α|α〉〈β| − |α〉〈α|β〉〈β| − |β〉〈β|α〉〈α|

〈α|α〉〈β|β〉 − 〈α|β〉〈β|α〉 . (4.1)

Writing α = s+w and β = s−w as well as 2w =: r e i ϕ, the corresponding Kähler potential

reads

K = 8πθ ln
(
e αᾱ+ββ̄ − e αβ̄+βᾱ

)
= 8πθ

[
2 ss̄ + 2ww̄ + ln

(
1 − e−4ww̄

)]

= 8πθ ln

(
2 e 2ss̄ sinh

r2

2

)
= 8πθ

[
2 ss̄ +

1

2
r2 + ln

(
1 − e−r2)

]
,

(4.2)

with the limits

K = 8πθ

[
2ss̄ +

1

2
r2 − e−r2

+ O( e−2r2

)

]
and K = 8πθ

[
2ss̄ + ln r2 +

1

24
r4 + O(r8)

]
.

(4.3)

It yields the metric

d`2 = 16πθ
[
dsds̄ + Ω dwdw̄

]
= 4πθ

[
4 dsds̄ + Ω(r2) (dr2 + r2dϕ2)

]
(4.4)

with the conformal factor

Ω(r2) =
1

4πθ
∂r2

(
r2 ∂r2K

)
=

1 − 2r2 e−r2 − e−2r2

(1 − e−r2)2
=

sinh r2 − r2

cosh r2 − 1
, (4.5)

possessing the limits

Ω(r2) = 1 + (1−2r2) e−r2

+ O( e−2r2

) and Ω(r2) =
1

3
r2 − 1

90
r6 + O(r10) . (4.6)

Clearly, the metric becomes flat for r → ∞ but develops a conical singularity with an angle
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of 4π at r = 0. The latter is removed by passing to the symmetric coordinate σ = w2, in

terms of which one finds

d`2 =16πθ

[
dsds̄ +

Ω(r2 → 4
√

σσ̄)

4
√

σσ̄
dσdσ̄

]

=16πθ

[
dsds̄ +

(
1

3
− 8

45
σσ̄ + O((σσ̄)2)

)
dσdσ̄

]
.

(4.7)

Due to the decoupling of the trivial center-of-mass dynamics, M2 = C×Mrel, with Mrel '
C rotationally symmetric, asymptotically flat, and of positive curvature R = 1

4πθ [54− 6
175r4+

O(r8)]. Head-on scattering of two lumps corresponds to a single radial trajectory in Mrel,

which in the smooth coordinate σ must pass straight through the origin. In the ‘doubled

coordinate’ w =
√

σ, we then see two straight trajectories with 90◦ scattering off the

singularity in the Moyal plane.

This picture persists for the scattering of two composite lumps, i.e. lumps obtained by

fusing

αi → α for i = 1, . . . , r1 and αr1+j → β for j = 1, . . . , r2 . (4.8)

The decoupling of the center-of-mass coordinate (now for k = r1+r2) is achieved by writing

α = s+r2w and β = s−r1w such that α−β = (r1+r2)w =: r e i ϕ , (4.9)

and one obtains

K = 8πθ

[
(r1+r2)ss̄ +

r1r2

r1 + r2
r2 + ln

(
1 −P e−r2

+ O( e−2r2

)
)]

(4.10)

r→0−→ 8πθ
[
(r1+r2)ss̄ + c0 + c1 ln r2 + c2 r4 + O(r6)

]
, (4.11)

where P is a polynomial in r2 and c0, c1 and c2 are constants. As in (4.3), the absence

of the r2 term (and c2 6= 0) leads to a conformal factor Ω ∼ r2 for r → 0 and the same

conical singularity for any value of r1 or r2. Its remedy by employing the coordinate

σ = w2 demonstrates that the 90◦ scattering angle is universal for head-on motion. Only

for more special situations with simultaneous head-on collision of k (>2) solitons one will

get π
k scattering.

Let us return to the simple case of r1 = r2 = 1 and drop the center-of mass coordinate.

The motion in Mrel is geodesic with conformal factor Ω(r2) given in (4.5). It conserves

angular momentum and energy,

l = Ω r2 φ̇ = v∞ b and e =
1

2
Ω ṙ2 +

l2

2Ωr2
=

1

2
v2
∞ , (4.12)

respectively, with the asymptotic speed v∞ and the impact parameter

b = l/
√

2e = rmin

√
Ω(rmin) . (4.13)

Hence, the trajectory is given by

dr

dφ
=

r2

b

√
Ω − b2/r2 , (4.14)
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Figure 2: Scattering angle for two lumps.

and we obtain the scattering angle

Θ(b) = π − 2

∫ ∞

rmin

b dr

r2
√

Ω − b2/r2
, (4.15)

which varies between 0 (for b → ∞ and Ω → 1) and π
2 (for b → 0 and Ω → 1

3r2). Therefore,

if we fix b and vary v∞, the trajectory is unchanged. The total energy of the k=2 system is

Emod := E[φα] = 16π + 8πθ e = 16π + 4πθv2
∞ . (4.16)

Good agreement with the full field-theory dynamics is expected only for small values of v∞.

For the cases r1 = 1(triangles), 2(diamonds), 4(boxes) and r2 = 1 the function Θ(b) is

plotted in figure 2.

5. Comparison with time-dependent field-theory solutions

According to the general arguments about the adiabatic approximation, the moduli-space

dynamics described in the previous section should apply to the whole family Sγ of actions

in (3.3). To test the quality of the approach, one would like to compare the moduli-

space scattering trajectories with the time evolution of the energy-density maxima of the

corresponding classical field configurations. Since widely separated lumps roam essentially

independently of each other, we already know the large-time asymptotics: a (multiplicative)

superposition of several one-soliton configurations of the form φα =
�−2Pα, after applying

individual translations and boosts.

To simplify the discussion, let us consider just two lumps of rank one each, i.e. combine

two copies of φ0 =
�−2|0〉〈0|. For large (positive or negative) times we then must have

φ(t → ±∞) '
(�− (1− e i δ1)U1 |0〉〈0|U †

1

) (�− (1− e i δ2)U2 |0〉〈0|U †
2

)

' �− (1− e i δ1)U1 |0〉〈0|U †
1 − (1− e i δ2)U2 |0〉〈0|U †

2 ,
(5.1)

where

Ui = U(~v±
i , ~r±

i , t) for i = 1, 2 and t → ±∞ (5.2)

– 12 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
8

are unitary transformations implementing translations by ~r±
i and boosts with velocities ~v±

i

in the Moyal plane. Note that (time-dependent) solitons need no longer be Grassman-

nian, and so we must allow in (5.1) for the slightly more general prefactors with velocity-

dependent phases δi [11, 21]. If the scattering angle differs from π, i.e. if nontrivial scat-

tering occurs, then the late velocities ~v +
i must differ from the early ones ~v−

i .

Outside the value γ = 1, the solitons are affected by each other’s presence, and no

integrability protects them from shrinking and decay. Yet, in cases where their lifetime is

sufficiently long the configurations (5.1) can still be approached for not too large times,

and scattering data are viable. In the absence of exact time-dependent solutions, however,

numerical investigations are needed for confirmation. To the author’s knowledge, computer

analysis has been applied only in the commutative case (θ=0) for γ=0 and G = O(3),

where it established the universality of 90◦ head-on two-soliton scattering [22]. In the

noncommutative realm, the equation of motion for G = U(∞) and γ=0 to solve in the

operator formulation is

0 = θ ∂t(φ
†∂tφ) +

[
a , φ†[a†, φ]

]
+

[
a†, φ†[a , φ]

]

= θ ∂t(φ
†∂tφ) + φ† [

a , [a†, φ]
]
−

[
a , [a†, φ†]

]
φ .

(5.3)

With φ ∈ U(H) viewed as an infinite-size matrix (φmn) in the Fock-space basis (2.20), it

reads
θ ∂t(φ

∗
nm∂tφn`) = (m−`)φ∗

nmφn`

+
√

(n+1)(` + 1) φ∗
nmφn+1 `+1 +

√
n ` φ∗

nmφn−1 `−1

−
√

(n+1)(m+1) φ∗
n+1 m+1φn` −

√
nmφ∗

n−1 m−1φn` .

(5.4)

It would be interesting to analyze this coupled initial-value problem numerically.

For γ = 1, the situation is entirely different since exact multi-soliton solutions are

available [11, 21, 23]. As a warm-up, consider the generic one-soliton configuration,

φ1(t) =
(
�− P̃ (t)

)
+

µ

µ̄
P̃ (t) =

�−
(

1−µ

µ̄

)
P̃ (t) with P̃ (t) = U(µ, t)Pα U(µ, t)† ,

(5.5)

where U(µ, t) is the unitary transformation effecting a boost with velocity

~v ≡ (vx, vy) = −
( µ + µ̄

µµ̄ + 1
,

µµ̄ − 1

µµ̄ + 1

)
⇐⇒ µ = −vx + i

√
1−~v2

1 − vy
∈ C \ R . (5.6)

The energy of this configuration is found to be

E[φ1] ≡ E(~v) = 8π

√
1 − ~v2

1 − v2
y

= 8π

(
1 − 1

2
v2
x +

1

2
v2
y + · · ·

)
. (5.7)

The exact two-soliton solution of rank two in the Ward model reads [11]

φ2(t) =
�−

(1−µ1

µ̄1
)|1〉〈2|2〉〈1|+(1− µ2

µ̄2
)|2〉〈1|1〉〈2|−µ(1− µ2

µ̄1
)|1〉〈1|2〉〈2|−µ(1− µ1

µ̄2
)|2〉〈2|1〉〈1|

〈1|1〉〈2|2〉 − µ〈1|2〉〈2|1〉
(5.8)
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with

µ =
(µ1 − µ̄1)(µ2 − µ̄2)

(µ1 − µ̄2)(µ2 − µ̄1)
and | i 〉 = U(µi, t) |αi〉 for i = 1, 2 . (5.9)

Here, µi parametrize the (constant) velocities of the two solitons like in (5.6), and αi

are their positions at t=0. The unitary transformations U boost the vacuum state, and

so the time-dependent states | i 〉 are just moving-frame vacua for the two lumps. It is

easy to verify that in the static limit µi → − i the configuration (5.8) tends to the static

solution (4.1) as long as α1 6= α2. For large times, the overlap 〈1|2〉 dies away, and indeed

the form (5.1) is attained. However, we see that ~v +
i = ~v−

i = ~vi since the velocities do

not change, and thus there is no scattering! This is also evinced by a no-force property of

Ward solitons, borne out by their energy additivity:

E[φ2] = E(~v1) + E(~v2) . (5.10)

Even for small velocities, the energy density of the solution (5.8) does not follow

the moduli-space dynamics of the previous section (except of course at very large impact

parameter where the scattering disappears). Therefore, we should look for other classes of

exact two-soliton solutions. Recently it has been established [24] for the commutative case

that all Ward model multi-solitons are obtained from the one-soliton configurations (5.5)

by dressing and fusing operations.6 The energy is additive under dressing and unchanged

under fusing. In fact, (5.8) was constructed by dressing (5.5) with a copy.

For comparison with the k=2 case of the previous section, it remains to consider fusing

the two-soliton (5.8). This is achieved by putting α1 = α2 = α and sending both velocities

to zero.7 In this limit a new type of time dependence emerges. Putting in (5.8)

µ1 = − i + ε and µ2 = − i − ε with C 3 ε → 0 (5.11)

and observing that

U(− i±ε, t) |α〉 = e−|ε|2 t2/4θ e±α ε t/
√

2θ
(
1 ∓ ε̄t√

2θ
a† + O(ε2)

)
|α〉 , (5.12)

we learn that any time dependence comes in the combination of εt/
√

2θ. It is crucial to

observe that the limits ε → 0 and |t| → ∞ do not commute, and so the asymptotic behavior

of (5.8) is modified under fusing. The result is

φ̃2(t) := lim
ε→0

φ2(t) =

(
�− 2

|α〉〈α|
〈α|α〉

) (
�− 2

|α̃〉〈α̃|
〈α̃|α̃〉

)
, (5.13)

where the time dependence hides in

|α̃〉 = |α〉 − i t

√
2

θ
|α⊥〉 with |α⊥〉 = (a† − ᾱ) |α〉 (5.14)

being orthogonal to |α〉. More explicitly,

φ̃2(t) =
�− 2

θ + 2t2

{
2 t2

(
|α〉〈α| + |α⊥〉〈α⊥|

)
− i t

√
2θ

(
|α〉〈α⊥| + |α⊥〉〈α|

)}
, (5.15)

which at t=0 momentarily degenerates to φ =
�
.

6This result presumably extends to the noncommutative case.
7The more general situation of merely equal velocities is related by boosting the center of mass.
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This solution can also be constructed directly by the dressing method, starting from

the ansatz (5.13) with an unknown state |α̃〉. In this way one arrives at the conditions [21]

a |α̃〉 +
[
a ,

|α〉〈α|
〈α|α〉

]
|α̃〉 = |α̃〉Z1 and ∂t |α̃〉 + i

√
2

θ

[
a†,

|α〉〈α|
〈α|α〉

]
|α̃〉 = |α̃〉Z2 , (5.16)

where Z1 and Z2 are functions of t to be determined. We read off that Z1 = α and fix the

(inessential) normalization such that Z2 = 0. It is not hard then to recover (5.14) as the

general solution indeed.

Putting α=0 for simplicity, the energy density of (5.15) is readily computed to be [21]

E =
4θ

(θ+2t2)2

{(
|0〉〈0| + |1〉〈1|

)
+

2t2

θ
(2|0〉〈0| + |1〉〈1| + |2〉〈2|) +

4t4

θ2
(|1〉〈1| + |2〉〈2|) (5.17)

−2t2

θ

(
1√
2
|2〉〈0| + 1√

2
|0〉〈2|

)
− i

23/2t3

θ3/2

(
|1〉〈0| − |0〉〈1| + 1√

2
|2〉〈1| − 1√

2
|1〉〈2|

)}
,

with E[φ̃2] = 2πθ trE = 16π as should be. Matching with Emod in (4.16) enforces v∞ = 0

which, however, does not restrict b in any way. Employing the Moyal-Weyl correspondence,

the energy density in the Moyal plane takes the form [21]

E? =
16 e−r2/θ

θ (1 + 2t2/θ)2

{
r2

θ
+

(
1 − r2

θ
+

r4

θ2

)2t2

θ
+

(
−r2

θ
+

r4

θ2

)4t4

θ2
−

(x2

θ
− y2

θ

)2t2

θ
− 4yr2t3

θ3

}
.

(5.18)

Unfortunately, this energy distribution is invariant under space-time inversion and has a

ring-like structure in the Moyal plane, localized at the origin like a bound state. Hence, we

do not find any scattering solutions with k=2 in the noncommutative U(1) Ward model.8

Interestingly, the nonabelian Ward model is very different in this regard because of

its larger moduli space: Fusing the U(2) two-soliton solution also features ring-like con-

figurations but also admits moduli choices which produce genuine 90◦ scattering, in the

commutative [25 – 27, 8] as well as in the noncommutative [21] case. The corresponding

moduli-space approximation was recently considered in [9] and [28], respectively. For θ=0,

it seems to agree with the analytical and numerical field-theory results obtained earlier.

In summary, their moduli-space motion does not approximate the extended abelian

sigma-model soliton scattering in the Moyal plane equally well for all values of the family

parameter γ. Numerical analysis is needed to make the case for γ<1. For the integrable

value γ=1 (the abelian Ward model), however, we are curiously lacking the field-theory

dynamics which the moduli-space kinematics is supposed to mimic.9 It is therefore conceiv-

able that in this case, even for arbitrary small velocities, the soliton scattering takes place

far away from their moduli space, if it occurs at all! Certainly, the known no-scattering

multi-solitons are not seen in the moduli space, which challenges Manton’s paradigm. In

part responsible for this failure seems to be the absence of magnetic forcing in the moduli

space in contrast to the crucial importance of the WZW-like action term for integrability.

Perhaps a numerical study can help to answer this conundrum.

8We generalized the ansatz (5.13) by relaxing the first projector, allowing for higher-rank projectors and

admitting time-dependent coefficients, all without success.
9This also applies to the no-scattering solutions of the nonabelian models.

– 15 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
8

Acknowledgments

The authors are grateful to Andrei V. Domrin and Alexander D. Popov for discussions and

reading the manuscript. This work was partially supported by the Deutsche Forschungs-

gemeinschaft.

References

[1] N.S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982) 54.

[2] N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, 2004.

[3] K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J.

Diff. Geom. 30 (1989) 1–50.

[4] J.C. Wood, Explicit construction and parameterization of harmonic two spheres in the

unitary group, Proc. London Math. Soc. 58 (1989) 608.

[5] W.J. Zakrzewski, Low dimensional sigma models, Hilger, 1989.

[6] R.S. Ward, Soliton solutions in an integrable chiral model in 2 + 1 dimensions, J. Math.

Phys. 29 (1988) 386.

[7] R.S. Ward, Classical solutions of the chiral model, unitons and holomorphic vector bundles,

Commun. Math. Phys. 128 (1990) 319.

[8] T.A. Ioannidou and W.J. Zakrzewski, Solutions of the modified chiral model in (2+1)

dimensions, J. Math. Phys. 39 (1998) 2693 [hep-th/9802122].

[9] M. Dunajski and N.S. Manton, Reduced dynamics of Ward solitons, Nonlinearity 18 (2005)

1677–1689 [hep-th/0411068].

[10] J.A. Harvey, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076.

[11] O. Lechtenfeld and A.D. Popov, Noncommutative multi-solitons in 2+1 dimensions, JHEP

11 (2001) 040 [hep-th/0106213].

[12] A.V. Domrin, O. Lechtenfeld and S. Petersen, Sigma-model solitons in the noncommutative

plane: construction and stability analysis, JHEP 03 (2005) 045 [hep-th/0412001].

[13] O. Lechtenfeld, A.D. Popov and B. Spendig, Noncommutative solitons in open N = 2 string

theory, JHEP 06 (2001) 011 [hep-th/0103196].

[14] R. Gopakumar, S. Minwalla and A. Strominger, Noncommutative solitons, JHEP 05 (2000)

020 [hep-th/0003160].

[15] M. Aganagic, R. Gopakumar, S. Minwalla and A. Strominger, Unstable solitons in

noncommutative gauge theory, JHEP 04 (2001) 001 [hep-th/0009142].
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